Managing the Antithrombotic Therapy After Percutaneous Coronary Intervention in Patients on Oral Anticoagulation

Darshni Arishta Jhagroe and Jurriën Maria ten Berg

St Antonius Hospital, Nieuwegein, The Netherlands

Abstract

In patients on chronic oral anticoagulation (OAC) who are undergoing a percutaneous coronary intervention (PCI), dual antiplatelet therapy (aspirin and a P2Y12 inhibitor) is required. However, combining dual antiplatelet therapy with OAC increases the risk of bleeding. Newer and stronger P2Y12 inhibitors also add more complexity to the regimen, as these antiplatelet agents are currently recommended as standard treatment in patients with acute coronary syndromes (ACS). It remains unclear whether these ACS patients on chronic OAC undergoing PCI should be treated with these new P2Y12 inhibitors as part of the antiplatelet therapy. Another issue to address is that new non-vitamin K oral anticoagulants have emerged as possible alternatives for stroke prevention in patients with AF. Thus, the anticoagulated patient undergoing PCI faces a treatment dilemma. Based on a real-life case, we will discuss the optimal anticoagulant and antiplatelet treatment with a review of the literature.

Keywords

Oral anticoagulation, non-vitamin K oral anticoagulants, percutaneous coronary intervention.

Disclosure: The authors have no conflicts of interest to declare.

Received: 1 July 2015 Accepted: 24 August 2015

Correspondence: Jurriën Maria ten Berg, St Antonius Center for Platelet Function Research, St Antonius Hospital, Koekoekslaan 1, Nieuwegein 3435 CM, The Netherlands. E. jurt@tenberg@gmail.com

Case report

An 81-year-old man was admitted to the St Antonius Hospital, Nieuwegein, The Netherlands, with typical chest pain during the night. He experienced no pain at hospitalisation despite his ECG showing ST-segment depression. He had a medical history of hypertension, diabetes mellitus and paroxysmal non-valvular AF. He was diagnosed with non-ST segment elevation MI (NSTEMI), as his ECG showed ST depression and his troponin-T test result was positive. He had been treated with an angiotensin-converting enzyme inhibitor, oral antidiabetics and an NOAC for 2 years. Prior to this treatment, he had been treated with VKA; however, his international normalised ratio (INR) levels remained unstable, which led to the switch to NOAC.

A loading dose of aspirin 300 mg, then 80 mg/day, and a loading dose of clopidogrel 600 mg, then 75 mg/day were started and a coronary angiography was planned. Neither prasugrel nor ticagrelor were given due to their association with increased risk of bleeding in combination with an OAC. The lower-dose NOAC tested for AF was administered. Angiography was performed via the radial approach and low-dose unfractionated heparin (60 IE/kg) was added to prevent catheter thrombosis. A second-generation drug-eluting stent (DES) was implanted when it became clear that this diabetic patient suffered from a long lesion in the left anterior descending artery. No glycoprotein Iib/IIa inhibitor was added to the antithrombotic regimen, as the risk of bleeding was deemed high. On the second day after PCI, the patient was discharged with the combination of low-dose aspirin, clopidogrel, lower-dose NOAC and a proton pomp inhibitor (PPI). Unfortunately, he was readmitted to the hospital 5 weeks later presenting with shock.

Dual antiplatelet therapy (DAPT) is indicated in patients who need to undergo percutaneous coronary intervention (PCI) procedures. Compared with oral anticoagulation (OAC) and aspirin, DAPT has been shown to reduce the risk of thrombotic events and the rate of bleeding events. Chronic OAC is required in up to 10% of the patients undergoing PCI, and is usually indicated for AF and mechanical heart valves. However, when combining OAC with DAPT, which is also known as triple therapy (TT), the risk of bleeding increases two- to threefold. In contrast, the thromboembolism risk increases when OAC is not prescribed in the antithrombotic regimen, while the risk of stent thrombosis, leading to MI, increases when DAPT is not prescribed as part of the TT. To further complicate this antithrombotic regimen, newer and stronger P2Y12 inhibitors such as prasugrel and ticagrelor are currently recommended as standard treatment in patients with acute coronary syndromes (ACS). It remains unclear whether prasugrel or ticagrelor should be included as part of antiplatelet therapy in these patients with ACS who are on chronic OAC and need to undergo PCI. Another issue to address is that several non-vitamin K oral anticoagulants (NOACs) such as dabigatran, rivaroxaban, apixiban and edoxaban have been shown to be at least equal or superior to vitamin K antagonists (VKAs) in reducing the risk of stroke in patients with AF. Hence, the anticoagulated patient undergoing PCI faces a treatment dilemma. At present, evidence from randomised controlled trials (RCTs) regarding the optimal antithrombotic regimen is minimal. This article will describe a case report and discuss the optimal anticoagulant and antiplatelet treatment with an overview of the literature.
due to a major bleeding in the gastrointestinal tract. At this time, all antithrombotic agents were temporarily discontinued; red blood cell and platelet transfusions, prothrombin complex concentrate and intravenous PPI were given. A gastric visible vessel was sclerosed, and after 2 days the patient returned to a stable condition. Due to a high risk of stent thrombosis and an acceptable risk of rebleeding, clopidogrel and the lower-dose NOAC were restarted. Aspirin was omitted from the regimen and clopidogrel was discontinued 3 months later.

How to Manage the Anticoagulation During Percutaneous Coronary Intervention?

The current European Society of Cardiology (ESC) guidelines on patients with AF presenting with ACS and/or undergoing PCI or valve interventions recommend uninterrupted OAC with no addition of heparin in the elective setting in those patients at moderate to high risk of thromboembolism (CHA₂DS₂-VASC score of ≥2) if the INR is >2.5. The as the patient in this case report had unstable INR levels, VKA was replaced with NOAC. Whether it is safe for patients treated with NOAC to undergo PCI without additional peri-procedural heparin or bridging is unknown, except for dabigatran. A small randomised Phase IIa study found that in patients treated with dabigatran alone during elective PCI, the rate of thrombotic events was increased in comparison with patients treated with unfractionated heparin (UFH). In patients on NOAC undergoing PCI, addition of low-dose heparin (60 IU/kg) is recommended to prevent catheter thrombosis. At presenty, the X-PLORER (Exploring the Efficacy and Safety of Rivaroxaban to Support Elective Percutaneous Coronary Intervention) study is investigating whether rivaroxaban can prevent thrombosis and other adverse ischaemic events in comparison with UFH during elective PCI. This study will hopefully shed some more light on the use of PPIs is recommended to prevent gastrointestinal bleeding

What Should be Done After the Percutaneous Coronary Intervention?

The new P2Y12 inhibitors ticagrelor and prasugrel, which are recommended as the drugs of choice in patients presenting with ACS, are both more potent than clopidogrel. There has been only one small observational study comparing prasugrel (n=21) with clopidogrel (n=356) in patients undergoing a DES implantation, who received DAPT and had an indication for OAC. The patients receiving prasugrel had an increased risk of bleeding (HR 4.6; 95% CI [1.9–11.4]; P<0.001), compared with clopidogrel. Another study investigating a P2Y12 inhibitor was a Swedish registry, in which ACS patients on ticagrelor and VKA (n=107) were compared with patients treated with aspirin, clopidogrel and VKA (n=159). The rates of thrombotic events (recurrent ACS, stroke/transient ischaemic attack and embolism) and major bleeding events were similar in both treated groups (4.7% versus 3.2% and 7.5% versus 7.0%, respectively). Nonetheless, the regular use of both P2Y12 inhibitors should not be recommended until further research concerning the safety and efficacy of combining prasugrel or ticagrelor with OAC has been completed.

Which Antiplatelet Agents Should Be Given in Patients with Acute Coronary Syndrome and AF?

 Elective or NSTEMI patients on NOAC undergoing PCI with coronary stenting require TT including an antithrombotic regimen that consists of a loading dose of aspirin 150–300 mg followed by 75–100 mg/day and a loading dose of clopidogrel 300–600 mg followed by a daily intake of 75 mg.

Although there are no reports of RCTs comparing NOAC and VKA in patients with AF undergoing PCI, the ESC position paper states that in patients who require TT, NOACs could be used instead of VKA. Data supporting the current guidelines are mostly based on the post-hoc analysis from the Randomised Evaluation of Long-term Anticoagulation Therapy (RELY) trial. A total of 6,952 patients with AF in the RELY study were, at some point during the study, on antiplatelet therapy when comparing the different dabigatran doses (110 mg or 150 mg twice daily [BID] and VKA. Of this subgroup, there were 812 patients who were simultaneously on aspirin, clopidogrel and VKA or dabigatran, and it was observed that the relative risk of bleeding was similar whether dabigatran or VKA was given in conjunction with DAPT. In addition, 110 mg dabigatran was associated with the lowest rates of absolute bleeding, regardless of the patient’s use of only VKA, VKA and a single antiplatelet agent or VKA with DAPT. When considering adding NOAC to DAPT, it is advised to use the lower tested dose for stroke prevention in AF patients (dabigatran 110 mg BID, rivaroxaban 15 mg once daily or apixaban 2.5 mg BID).
Antithrombotic Therapy after Percutaneous Coronary Intervention

Overall, these studies demonstrated that omitting aspirin from the TT did not lead to an increased risk of thromboembolic events and these data may imply that dual therapy (OAC and clopidogrel) may be an alternative to TT. However, it should be taken into account that these studies were not powered to detect differences in the occurrence of thromboembolic outcomes. Omission of clopidogrel from the antithrombotic regimen is not recommended in light of findings from a study by van Werkum et al., who showed that discontinuing clopidogrel within 30 days after PCI was the strongest predictor of stent thrombosis (HR 6.5; 95% CI [8.0–16.7]). In contrast, the risk of developing late stent thrombosis may be reduced, as there have been several RCTs that have shown that patients who received 3 months of DAPT after PCI with second-generation DES implantation had similar rates of stent thrombosis compared with those who received 12 months DAPT. For the reasons mentioned above, it seems unsafe to cease clopidogrel within the first 3 months after PCI, but one may consider to stop clopidogrel after 3 months of PCI in patients at high risk of bleeding.

Conclusions

The optimal antithrombotic therapy remains unknown for patients on chronic OAC following PCI with coronary stenting. (NOAC and DAPT are currently recommended by the ESC guidelines, but are associated with increased risk of bleeding. Some studies have shown evidence that clopidogrel plus OAC may be an alternative for TT. In addition, NOACs may be as effective as VKA as part of TT or dual therapy. Currently, P2Y12 inhibitors (ticagrelor and prasugrel) are not recommended as part of TT in AF patients after PCI. Further research in RCTs are required to clarify the optimal antithrombotic regimen for patients on long-term (NOAC following PCI)