Rest and Dobutamine stress echocardiography in the evaluation of mid-term results of mitral valve repair in Barlow's disease

Login or register to view PDF.
Abstract

Abstract Background
Surgical \anatomical\" repair is the most frequent technique used to correct mitral regurgitation due to severe myxomatous valve disease. Debate, however, persists on the efficacy of this technique, as well as on the durability of the repaired valve, and on its functioning and hemodynamics under stress conditions. Thus, a basal and Dobutamine echocardiographic (DSE) study was carried out to evaluate these parameters at mid-term follow-up.

"

Pages

Methods and Results
Twenty patients selected for the study (12 men and 8 women, mean age 60 ± 9 years) underwent pre- and post-operative transthoracic echocardiography (TTE) and intra-operative transesophageal echocardiography (TEE). At mid-term follow-up (20 ± 5 months) all patients underwent rest TTE and DSE (3 min. dose increments up to 40 microg/Kg/min protocol). Pre-discharge and one-month TTE showed absence of MR in 11 pts., trivial or mild MR in 9 pts. and normal mitral valve area and gradients. Mid-term TTE showed decrease in left atrial and ventricular dimension, in pulmonary artery pressure (sPAP) and grade of MR. During DSE a significant increase in mitral valve area, maximum and mean gradients, sPAP, heart rate and cardiac output and a decrease in systolic annular diameter and left ventricular volume were found; in 6 pts. a transient left ventricular outflow tract obstruction was observed.

Conclusion
Basal and Dobutamine stress echocardiography proved to be valuable tools for evaluation of mid-term results of mitral valve repair. In our study population, the surgical technique employed had a favourable impact on several cardiac parameters, evaluated by these methods.

Background
Over the last 30 years many surgical techniques have been developed to correct mitral regurgitation (MR) in degenerative valve disease, to prevent the occurrence of left ventricular outflow tract obstruction (LVOTO) and to ameliorate the function and durability of the repaired mitral valve, particularly in patients with extensive myxomatous degeneration of mitral valve leaflets [1-4]. Transesophageal (TEE) and transthoracic (TTE) Doppler echocardiography are the most useful tools to assess intra- and post-operative results of mitral valve repair, defining morphology and function of the repaired valve (area, mean and peak gradients, annular dynamics, the presence and grade of residual mitral regurgitation, the presence of LVOTO) [5-17] Good functional long-term results using these surgical techniques have been demonstrated [18-21]. Debate, however, persists over the long-term stability of correction of MR due to extensive myxomatous degeneration of both leaflets [18-24] and over the hemodynamics of the repaired valve under stress conditions. Exercise echocardiography, considered a physiological stress test, was used to evaluate the hemodynamic changes and to unmask valve dysfunction under exercise conditions [25,26]. However, informations derived from this test are limited because of the difficulty in obtaining adequate Doppler signals due to respiratory-related artefacts or to increased chest wall motion, or because patients are unable or unwilling to perform an exercise protocol. Dobutamine stress echocardiography (DSE) has been proposed as an effective alternative, offering clear images and optimal Doppler signals [27,28]. However, Dobutamine itself can produce a transient LVOTO, not necessarily related to surgical technique[29].

The purpose of the present study was to analyse mid-term results of mitral valve repair and hemodynamic changes during DSE in patients referred to our Institution with extensive myxomatous degenerative mitral valve with the features of Barlow's disease [30].

Pages

References
  1. Carpentier A, Deloche A, Dauptain J, Soyer R, Blondeau P, Piwnica A, Dubost C: A new reconstructive operation for correction of mitral and tricuspid insufficiency. J Thorac Cardiovasc Surg 1971, 61:1-13.
  2. Carpentier AF, Lessana A, Relland JYM, Belli E, Mihaileanu S, Berrebi AJ, Palsky E, Loulmet DF: The physio-ring": an advanced concept in mitral valve annuloplasty. Ann Thorac Surg 1995, 60:1177-86.
  3. Fucci C, Sandrelli L, Pardini A, Torracca L, Ferrari , Alfieri O: Improved results with mitral valve repair using new surgical techniques. Eur J Cardiothorac Surg 1995, 9:621-627.
  4. Maisano F, Torracca L, Oppizzi M, Stefano PL, D'Addario G, La Canna G, Zogno M, Alfieri O: The "edge-edge" technique: a simplified method to correct mitral insufficiency. Eur J Cardiothorac Surg 1998, 13:240-246.
  5. Ormiston JA, Shah PM, Tei C, Wong M: Size and motion of the mitral valve annulus in man. A two-dimensional echocardiographic method and finding in normal subjects. Circulation 1981, 64(1):113-20.
  6. Lesebre JP, Tribouilloy C: Echo-Doppler quantitative assessment of non-ischaemic mitral regurgitation. Eur Heart J 1991, 12(suppl B):10-14.
  7. Bolger AF, Eigler NL, Maurer G: Quantifying valvular regurgitation: limitations and inherent assumptions of Doppler techniques. Circulation 1988, 78:1316-1318.
  8. Yoshida K, Yoshikawa J, Yamaura Y, Hozumi T, Akasaka T, Fukaya T: Assessment of mitral regurgitation by biplane transesophageal colour Doppler flow mapping. Circulation 1990, 82:1121-1126.
  9. Smith MD, Harrison MR, Pinton R, Kandhil H, Kwan OL, DeMaria AN: Regurgitant jet size by transesophageal compared with transthoracic Doppler colour flow imaging. Circulation 1991, 83:79-86.
  10. Gallerstein PE, Berger M, Rubenstein S, Berdoff RL, Goldberg E: Systolic anterior motion of the mitral valve and outflow obstruction after mitral valve reconstruction. Chest 1983, 83:819-820.
  11. Kronzon I, Cohen ML, Winer HE, Colvin SB: Left ventricular outflow obstruction: a complication of valvuloplasty. J Am Coll Cardiol 1984, 4:825-828.
  12. Galler M, Krozon I, Slater J, Lighty GW Jr, Politzer F, Colvin S, Spencer F: Long-term follow-up after mitral valve reconstruction: incidence of postoperative left ventricle outflow obstruction. Circulation 1986, 74(suppl I):I-99-I-103.
  13. Kreindel MS, Schiavone WA, Lever HM, Cosgrove D: Systolic anterior motion of the mitral valve after Carpentier ring valvuloplasty for mitral valve prolapse. Am J Cardiol 1986, 57:408-412.
  14. Mihaileanu S, Marino JP, Chauvaud S, Perier P, Forman J, Viossat J, Julien J, Dreyfus G, Abastado Ph, Carpentier A: Left ventricular outflow obstruction after mitral valve repair (Carpentier's technique): proposed mechanisms of disease. Circulation 1988, 78(suppl I):I-78-I-84.
  15. Jebara VA, Mihaileanu S, Acar C, Brizard C, Grare P, Latremouille C, Chauvaud S, Fabiani JN, Deloche A, Carpentier A: Left ventricular outflow tract obstruction after mitral valve repair. Results of the sliding leaflet technique. Circulation 1993, 88(part 2):30-34.
  16. Maslow AD, Regan MM, Haering M, Johnson RG, Levine RA: Echocardiographic predictors of left ventricular outflow tract obstruction and systolic anterior motion of the mitral valve after mitral valve reconstruction for myxomatous valve disease. J Am Coll Cardiol 1999, 34(7):2096-2104.
  17. Shah PM, Raney AA: Echocardiographic correlates of left ventricular outflow obstruction and systolic anterior motion following mitral valve repair. J Heart Valve Dis 2001, 10(3):302-306.
  18. David TE, Armstrong S, Sun Z, Daniel L: Late results of mitral valve repair for mitral regurgitation due to degenerative disease. Ann Thorac Surg 1993, 56:7-14.
  19. Alvarez JM, Deal CW, Loveridge K, Brennan P, Eisenberg R, Ward M, Bhattacharya K, Atkinson SJ: Repairing the degenerative mitral valve: ten- to fifteen-year follow-up. J Thorac Cardiovasc Surg 1996, 112:238-247.
  20. David TE, Omran A, Armstrong S, Sun Z, Ivanov J: Long-term results of mitral valve repair for myxomatous disease with and without chordal replacement with expanded polytetrafluoroethylene sutures. J Thorac Cardiovasc Surg 1998, 115:1279-86.
  21. Gillinov AM, Cosgrove DM, Blackstone EH, Diaz R, Arnold JH, Lytle BW, Smedira NG, Sabik JF, McCarthy PM, Loop FD: Durability of mitral valve repair for degenerative disease. J Thorac Cardiovasc Surg 1998, 116:734-43.
  22. Enriquez-Sarano M, Freeman WK, Tribouilloy CM, Orszulak TA, Khanderia BK, Seward JB, Bailey KR, Tajik AJ: Functional anatomy of mitral regurgitation. J Am Coll Cardiol 1999, 34(4):1129-1136.
  23. Yacoub M, Halim M, Radley-Smith R, McKay R, Nijveld A, Towers M: Surgical treatment of mitral regurgitation caused by floppy valves: repair versus replacement. Circulation 1981, 64(suppl II):210-216.
  24. Deloche A, Jebara VA, Relland JYM, Chauvaud S, Fabiani JN, Perier P, Dreyfus G, Mihaileanu S, Carpentier A: Valve repair with Carpentier techniques. J Thorac Cardiovasc Surg 1990, 99:990-1002.
  25. Borghetti V, Campana M, Scotti C, Parrinello G, Lorusso R: Preliminary observations on haemodinamics during physiological stress conditions following "double-orifice" mitral valve repair. Eur J Cardiothorac Surg 2001, 20:262-269.
  26. Agricola E, Maisano F, Oppizzi M, De Bonis M, Torracca L, La Canna G, Alfieri O: Mitral valve reserve in double orifice technique. An exercise echocardiographic study. J Heart Valve Dis 2002, 11(5):637-43.
  27. Sonoda M, Takenaka K, Sakamoto T, Watanabe F, Nakajima Y, Yang WD, Omata M: Effects of Dobutamine infusion on mitral regurgitation. Echocardiography 1998, 15(1):13-20.
  28. Timek TA, Nielsen SL, Liang D, Lai DT, Dagum P, Daughters GT, Ingels NBJr, Miller DC: Edge-to-edge mitral repair: gradients and three dimensional annular dynamics in vivo during inotropic stimulation. Eur J Cardiothorac Surg 2001, 19(4):431-7.
  29. Scandura S, Arcidiacono S, Felis S, Barbagallo G, Deste W, Drago A, Calvi V, Giuffrida G: Dynamic obstruction to left ventricular outflow during Dobutamine stress echocardiography: the probable mechanism and clinical implications. Cardiologia 1998, 43(11):1201-8.
  30. Barlow JB: Idiopatic (degenerative) and rheumatic mitral valve prolapse: historical aspects and an overview. J Heart Valve Dis 1992, 1:163-174.
  31. Armstrong WF, Pellikka PA, Ryan T, Crouse L, Zoghbi WA: Stress echocardiography: recommendations for performance and interpretation of stress echocardiography. Stress echocardiography Task Force of the Nomenclature and Standard Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 1998, 11(1):97-104.
  32. David TE, Komeda M, Pollick C, Burns RJ: Mitral valve annuloplasty: the effect of the type on left ventricular function. Ann Thorac Surg 1989, 47:524-528.
  33. Okada Y, Shomura T, Yamaura Y, Yoshikawa J: Comparison of the Carpentier and Duran prosthetic rings used in mitral valve reconstruction. Ann Thorac Surg 1995, 59:658-659.
  34. Scrofani R, Moriggia S, Salati M, Fundaro P, Danna P, Santoli C: Mitral valve remodelling: long-term results with posterior pericardial annuloplasty. Ann Thorac Surg 1996, 61:895-899.
  35. Borghetti V, Campana M, Scotti C, Domenighini D, Totaro P, Coletti G, Pagani M, Lorusso R: Biological versus prosthetic ring in mitral valve repair: enhancement of mitral annulus dynamics and left ventricular function with pericardial annuloplasty at long-term. Eur J Cardiothorac Surg 2000, 17:431-439.
  36. Rassi A Jr, Crawford MH, Richards KL, Miller JF: Differing mechanisms of exercise flow augmentation of the mitral and aortic valves. Circulation 1988, 77:543-551.
  37. Gorcsan J 3rd, Deswal A, Mankad S, Mandarino WA, Mahler CM, Yamazaki N, Katz WE: Quantification of the myocardial response to low-dose dobutamine using tissue Doppler echocardiographic measures of velocity and velocity gradient. Am J Card 1998, 81:615-623.
  38. Pellikka PA, Oh JK, Bailey KR, Nichols BA, Monahan KH, Tajik AJ: Dynamic intraventricular obstruction during dobutamine stress echocardiography. A new observation. Circulation 1992, 86(5):1429-32.
  39. Hashimoto Y, Reid CL, Gardin JM: Left ventricular cavitary geometry and dynamic intracavitary left ventricular obstruction during dobutamine stress echocardiography. Am J Card Imaging 1996, 10(3):163-9.

"