Arterial pressure changes monitoring with a new precordial noninvasive sensor

Login or register to view PDF.
Abstract

Introduction
Recently, a cutaneous operator independent force-frequency relation recording system as been validated in the stress echo lab, based on first heart sound amplitude variations at increasing heart rates1-2. Contractility quantification and systolic/diastolic time measurement through the system has been previously demonstrated1, 3. A further application could be the assessment of Second Heart Sound (S2) amplitude variations at increasing heart rates. In fact, the maximum amplitude of vibrations measured by the sensor following the ECG T wave originates from the physical phenomenon of the abrupt deceleration of the moving aortic blood mass. The audible components of this deceleration give rise to the Second Heart Sound (S2)4-6. The aim of this study was to assess the relationship between second heart sound amplitude variations at increasing heart rates and hemodynamic changes.

References
  1. Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, Pratali L, Pianelli M, Faita F, Giannoni M, Picano E. Cardiac reflections and natural vibrations. Force-frequency relation recording system in the stress echo lab. Cardiovasc Ultrasound. 2007;5(1):42.
  2. Gemignani V, Bianchini E, Faita F, Giannoni M, Pasanini E, Picano E, Bombardini T. Operator independent force-frequency relation monitoring during stress with a new transcutaneous cardiac force sensor. Proc. 34th Annual Conference of Computers in Cardiology 2007.
  3. Bombardini T, Gemignani V, Bianchini E, Venneri L, Petersen C, Pasanisi E, Pratali L, Alonso- Rodriguez D, Pianelli M, Faita F, Giannoni M, Arpesella G, Picano E. Diastolic Time - Frequency Relation in the Stress Echo Lab. Filling timing and flow at different heart rates. Cardiovasc Ultrasound. 2008;6:15.
  4. Tanigawa N, Smith D, Craige E. The influence of left ventricular relaxation in determination of the intensity of the aortic component of the second heart sound. Jap Circ J 1991;55: 737├óÔé¼ÔÇ£43.
  5. Kusukawa R, Bruce DW, Sakamoto T, MacCanon DM, Luisada AA Hemodynamic determinants of the amplitude of the second heart sound. J Appl Physiol 1996; 21: 938├óÔé¼ÔÇ£46.
  6. Sabbah H, Stein P. Investigation of the theory and mechanism of the origin of the second heart sound. Circ Res 1976; 39:874├óÔé¼ÔÇ£82.
  7. Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG; American Society of Echocardiography. American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr. 2007; 20(9):1021-41.
  8. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt JU, Zamorano JL; European Association of Echocardiography. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr. 2008;9(4):415-37.
  9. Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E. Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Failure 2005; 2:173-81.
  10. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.
  11. Otsuki T, Maeda S, Iemitsu M, Saito Y, Tanimura Y, Ajisaka R, Miyauchi T: Contribution of systemic arterial compliance and systemic vascular resistance to effective arterial elastance changes during exercise in humans. Acta Physiol 2006,188:15-20.
  12. Kass DA: Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992, 86:513-21.
  13. Bombardini T. Method and device for the diagnosis and therapy of chronic heart failure. United States Patent US 6,859,662. Issued on February 22, 2005.
  14. Rangayyan MR, Lehner RJ. Phonocardiogram signal analysis: a review. CRC Crit Rev Biomed Eng 1988;15:211├óÔé¼ÔÇ£36.
  15. Bulgrin JR, Rubal BJ, Thompson CR, Moody JM. Comparison of short-time Fourier, wavelet and time-domain analyses of intracardiac sounds. Biomed Sci Instrum 1993;29:465├óÔé¼ÔÇ£72.
  16. Smith D, Craige E. Influence of the aortic component of the second heart sound on the left ventricular maximal negative dP/dt in the dog. Am J Cardiol 1985; 55: 205├óÔé¼ÔÇ£9.
  17. Stein P, Sabbah H, Anbe T, Khaja F. Hemodynamic and anatomic determinants of relative differences in amplitude of the aortic and pulmonary components of the second heart sound. Am J Cardiol 1978; 42: 539├óÔé¼ÔÇ£44.
  18. Stein P, Sabbah H, Khaja F Anbe DT. Exploration of the cause of low intensity aortic component of the second sound in nonhypotensive patients with poor ventricular performance. Circulation 1978; 57: 590├óÔé¼ÔÇ£3
  19. Zhang XY, Zhang YT. Model-based analysis of effects of systolic blood pressure on frequency characteristics of the second heart sound. Conf Proc IEEE Eng Med Biol Soc. 2006;1:2888-91.
  20. Manecke GR, Nemirov MA, Bicker AA, Adsumelli RN, Poppers PJ. The Effect of Halothane on the Amplitude and Frequency Characteristics of Heart Sounds in Children. Anesth Analg 1999;88:263.
  21. Arnott PJ, Pfeiffer GW, Tavel ME. Spectral analysis of heart sounds: relationships between some physical characteristics and frequency spectra of first and second heart sounds in normals and hypertensives. J Biomed Eng. 1984;6(2):121-8.
  22. Zalter R, Hardy HC, Luisada AA: Acoustic transmission characteristics of the thorax. J Appl Physiol 1963;18:428-36.
  23. Verburg J: Transmission of vibrations of the heart to the chest wall. In Advances in cardiovascular physics Edited by: Ghista DN, Ain Basel: Karger AG; 1989:84-103.
  24. Wood JC, Barry DT. Quantification of first heart sound frequency dynamics across the human chest wall. Med Biol Eng Comput. 1994;32(4 Suppl):S71-8.
  25. Durand LG, Langlois YE, Lanthier T, Chiarella R, Coppens P, Carioto S, Bertrand-Bradley S. Spectral analysis and acoustic transmission of mitral and aortic valve closure sounds in dogs. Part 1. Modelling the heart/thorax acoustic system. Med Biol Eng Comput. 1990;28(4):269-77.
  26. Luisada AA, Singhal A, Knighten V. New index of cardiac contractility during stress testing with treadmill. Acta Cardiol 1986;41:31├óÔé¼ÔÇ£9.
  27. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA; American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533-53.
  28. Forjaz CL, Cardoso CG Jr, Rezk CC, Santaella DF, Tinucci T. Postexercise hypotension and hemodynamics: the role of exercise intensity. J Sports Med Phys Fitness. 2004;44(1):54-62.
  29. Halliwill JR, Taylor JA, Eckberg DL. Impaired sympathetic vascular regulation in humans after acute dynamic exercise. J Physiol. 1996;495 ( Pt 1):279-88.
  30. Bisquolo VA, Cardoso CG Jr, Ortega KC, GusmĂŁo JL, Tinucci T, NegrĂŁo CE, Wajchenberg BL, Mion D Jr, Forjaz CL. Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia. J Appl Physiol. 2005;98(3):866-71.
  31. Piepoli M, Coats AJ, Adamopoulos S, Bernardi L, Feng YH, Conway J, Sleight P. Persistent peripheral vasodilation and sympathetic activity in hypotension after maximal exercise. J Appl Physiol. 1993;75(4):1807-14.
  32. Rezk CC, Marrache RC, Tinucci T, Mion D Jr, Forjaz CL. Post-resistance exercise hypotension, hemodynamics, and heart rate variability: influence of exercise intensity. Eur J Appl Physiol. 2006;98(1):105-12.
  33. Debbal SM, Bereksi-Reguig F. Automatic measure of the split in the second cardiac sound by using the wavelet transform technique. Comput Biol Med. 2007;37(3):269-76.
  34. Nigam V, Priemer R. A dynamic method to estimate the time split between the A2 and P2 components of the S2 heart sound. Physiol Meas. 2006;27(7):553-67.
  35. Bombardini T, Galderisi M, Agricola E, Coppola V, Mottola G, Picano E. Negative stress echo: Further prognostic stratification with assessment of pressure├óÔé¼ÔÇ£volume relation. Int J Cardiol 2008; 126(2):258-67. Epub 2007 May 16.